Chapter 4: Imperfections in Solids

ISSUES TO ADDRESS...

• What are the solidification mechanisms?
• What types of defects arise in solids?
• Can the number and type of defects be varied and controlled?
• How do defects affect material properties?
• Are defects undesirable?
Imperfections in Solids

- **Solidification** - result of casting of molten material
 - 2 steps
 - Nuclei form
 - Nuclei grow to form crystals – grain structure
- Start with a molten material – all liquid

- Crystals grow until they meet each other

Adapted from Fig. 4.14(b), *Callister & Rethwisch 8e.*
Polycrystalline Materials

Grain Boundaries
- regions between crystals
- transition from lattice of one region to that of the other
- slightly disordered
- low density in grain boundaries
 - high mobility
 - high diffusivity
 - high chemical reactivity

Adapted from Fig. 4.7, Callister & Rethwisch 8e.
Solidification

Grains can be
- equiaxed (roughly same size in all directions)
- columnar (elongated grains)

Shell of equiaxed grains due to rapid cooling (greater ΔT) near wall

Columnar in area with less undercooling

Grain Refiner - added to make smaller, more uniform, equiaxed grains.

Adapted from Fig. 5.17, Callister & Rethwisch 3e.
Imperfections in Solids

There is no such thing as a perfect crystal.

• What are these imperfections?
• Why are they important?

Many of the important properties of materials are due to the presence of imperfections.
Types of Imperfections

- Vacancy atoms
-Interstitial atoms
-Substitutional atoms

- Dislocations

- Grain Boundaries

Point defects

Line defects

Area defects
Point Defects in Metals

- **Vacancies:**
 - vacant atomic sites in a structure.

- **Self-Interstitials:**
 - "extra" atoms positioned between atomic sites.
Equilibrium Concentration: Point Defects

- Equilibrium concentration varies with temperature!

\[\frac{N_V}{N} = \exp \left(\frac{-Q_V}{kT} \right) \]

- Each lattice site is a potential vacancy site

Boltzmann's constant

- \(Q_V = (1.38 \times 10^{-23} \text{ J/atom-K}) \)
- \((8.62 \times 10^{-5} \text{ eV/atom-K}) \)
Measuring Activation Energy

- We can get Q_v from an experiment.
- Measure this...

\[
\frac{N_V}{N} = \exp\left(\frac{-Q_v}{kT}\right)
\]

- Replot it...

\[
\ln \frac{N_V}{N} = -\frac{Q_v}{kT}
\]

exponential dependence!
Estimating Vacancy Concentration

• Find the equil. # of vacancies in 1 m3 of Cu at 1000$^\circ$C.

• Given:
 \[\rho = 8.4 \text{ g/cm}^3 \quad A_{\text{Cu}} = 63.5 \text{ g/mol} \]
 \[Q_v = 0.9 \text{ eV/atom} \quad N_A = 6.02 \times 10^{23} \text{ atoms/mol} \]

For 1 m3, \(N = \rho \times \frac{N_A}{A_{\text{Cu}}} \times 1 \text{ m}^3 = 8.0 \times 10^{28} \text{ sites} \)

\[N_v = \exp\left(\frac{-Q_v}{kT}\right) = 2.7 \times 10^{-4} \]

\[T = 1273 \text{ K} \]

\[T = 8.62 \times 10^{-5} \text{ eV/atom-K} \]

\[0.9 \text{ eV/atom} \]

\[\frac{Q_v}{kT} \]

\[k \]

\[N_v = (2.7 \times 10^{-4})(8.0 \times 10^{28}) \text{ sites} = 2.2 \times 10^{25} \text{ vacancies} \]
Observing Equilibrium Vacancy Conc.

- Low energy electron microscope view of a (110) surface of NiAl.
- Increasing temperature causes surface island of atoms to grow.
- Why? The equil. vacancy conc. increases via atom motion from the crystal to the surface, where they join the island.

Island grows/shrinks to maintain equil. vacancy conc. in the bulk.

Two outcomes if impurity (B) added to host (A):

- **Solid solution of B in A** (i.e., random dist. of point defects)

 - **Substitutional** solid soln. (e.g., Cu in Ni)
 - **Interstitial** solid soln. (e.g., C in Fe)

- Solid solution of B in A plus particles of a new phase (usually for a larger amount of B)

 Second phase particle
 -- different composition
 -- often different structure.
Imperfections in Metals (ii)

Conditions for substitutional solid solution (S.S.)

- **W. Hume – Rothery rule**
 - 1. Δr (atomic radius) < 15% ✓
 - 2. Proximity in periodic table ✓
 - i.e., similar electronegativities
 - 3. Same crystal structure for pure metals ✓
 - 4. Valency
 - All else being equal, a metal will have a greater tendency to dissolve a metal of higher valency than one of lower valency
Imperfections in Metals (iii)

Application of Hume–Rothery rules – Solid Solutions

1. Would you predict more Al or Ag to dissolve in Zn?

2. More Zn or Al in Cu?

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Radius (nm)</th>
<th>Crystal Structure</th>
<th>Electronegativity</th>
<th>Valence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.1278</td>
<td>FCC</td>
<td>1.9</td>
<td>+2</td>
</tr>
<tr>
<td>C</td>
<td>0.071</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>0.060</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag</td>
<td>0.1445</td>
<td>FCC</td>
<td>1.9</td>
<td>+1</td>
</tr>
<tr>
<td>Al</td>
<td>0.1431</td>
<td>FCC</td>
<td>1.5</td>
<td>+3</td>
</tr>
<tr>
<td>Co</td>
<td>0.1253</td>
<td>HCP</td>
<td>1.8</td>
<td>+2</td>
</tr>
<tr>
<td>Cr</td>
<td>0.1249</td>
<td>BCC</td>
<td>1.6</td>
<td>+3</td>
</tr>
<tr>
<td>Fe</td>
<td>0.1241</td>
<td>BCC</td>
<td>1.8</td>
<td>+2</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1246</td>
<td>FCC</td>
<td>1.8</td>
<td>+2</td>
</tr>
<tr>
<td>Pd</td>
<td>0.1376</td>
<td>FCC</td>
<td>2.2</td>
<td>+2</td>
</tr>
<tr>
<td>Zn</td>
<td>0.1332</td>
<td>HCP</td>
<td>1.6</td>
<td>+2</td>
</tr>
</tbody>
</table>

Table on p. 118, *Callister & Rethwisch 8e.*
Impurities in Solids

• Specification of composition

 – weight percent

 \[C_1 = \frac{m_1}{m_1 + m_2} \times 100 \]

 \[m_1 = \text{mass of component 1} \]

 – atom percent

 \[C_1' = \frac{n_{m1}}{n_{m1} + n_{m2}} \times 100 \]

 \[n_{m1} = \text{number of moles of component 1} \]

 \[C_1 = \frac{C_1'A_2}{C_1'A_2 + C_2'A_3} \times 100\% \quad \text{A is atomic weight} \]

 \[C_1 = \frac{C_1'A_2}{C_1'A_2 + C_2'A_3} \times 100\% \]

 \[E_2 \quad 4.6a \]

 \[E_2 \quad 4.7c \]
Line Defects

Dislocations:
- are line defects,
- slip between crystal planes result when dislocations move,
- produce permanent (plastic) deformation.

Schematic of Zinc (HCP):
- before deformation
- after tensile elongation

Cover more in Chapter 7
Imperfections in Solids

Linear Defects (Dislocations)

– Are one-dimensional defects around which atoms are misaligned

• Edge dislocation:
 – extra half-plane of atoms inserted in a crystal structure
 – \mathbf{b} perpendicular (\perp) to dislocation line

• Screw dislocation:
 – spiral planar ramp resulting from shear deformation
 – \mathbf{b} parallel (\parallel) to dislocation line

Burger’s vector, \mathbf{b}: measure of lattice distortion
Imperfections in Solids

Edge Dislocation

Burgers vector

Edge dislocation line

Fig. 4.3, Callister & Rethwisch 8e.
Motion of Edge Dislocation

• Dislocation motion requires the successive bumping of a half plane of atoms (from left to right here).
• Bonds across the slipping planes are broken and remade in succession.

Atomic view of edge dislocation motion from left to right as a crystal is sheared.

Click once on image to start animation
(Courtesy P.M. Anderson)
Chapter 4

Imperfections in Solids

Screw Dislocation

Adapted from Fig. 4.4, Callister & Rethwisch 8e.
VMSE: Screw Dislocation

• In VMSE:
 – a region of crystal containing a dislocation can be rotated in 3D
 – dislocation motion may be animated
Edge, Screw, and Mixed Dislocations

Adapted from Fig. 4.5, Callister & Rethwisch 8e.
Imperfections in Solids

Dislocations are visible in electron micrographs

Fig. 4.6, Callister & Rethwisch 8e.
Dislocations & Crystal Structures

• Structure: close-packed planes & directions are preferred.

• Comparison among crystal structures:
 - FCC: many close-packed planes/directions;
 - HCP: only one plane, 3 directions;
 - BCC: none

• Specimens that were tensile tested.
Planar Defects in Solids

• One case is a twin boundary (plane)
 – Essentially a reflection of atom positions across the twin plane.

• Stacking faults
 – For FCC metals an error in ABCABC packing sequence
 – Ex: ABCABABC

Adapted from Fig. 4.9, Callister & Rethwisch 8e.
Catalysts and Surface Defects

- A **catalyst** increases the rate of a chemical reaction without being consumed
- Active sites on catalysts are normally surface defects

Single crystals of \((\text{Ce}_{0.5}\text{Zr}_{0.5})\text{O}_2\) used in an automotive catalytic converter

Fig. 4.10, *Callister & Rethwisch 8e.*

Fig. 4.11, *Callister & Rethwisch 8e.*
Microscopic Examination

- Crystallites (grains) and grain boundaries. Vary considerably in size. Can be quite large.
 - ex: Large single crystal of quartz or diamond or Si
 - ex: Aluminum light post or garbage can - see the individual grains

- Crystallites (grains) can be quite small (mm or less) – necessary to observe with a microscope.
Optical Microscopy

- Useful up to 2000X magnification.
- Polishing removes surface features (e.g., scratches).
- Etching changes reflectance, depending on crystal orientation.

Micrograph of brass (a Cu-Zn alloy)

Adapted from Fig. 4.13(b) and (c), Callister & Rethwisch 8e. (Fig. 4.13(c) is courtesy of J.E. Burke, General Electric Co.)
Grain boundaries...

- are imperfections,
- are more susceptible to etching,
- may be revealed as dark lines,
- change in crystal orientation across boundary.

Optical Microscopy

ASTM grain size number

\[N = 2^{n-1} \]

number of grains/in\(^2\) at 100x magnification
Optical Microscopy

• Polarized light
 – metallographic scopes often use polarized light to increase contrast
 – Also used for transparent samples such as polymers
Microscopy

Optical resolution ca. 10^{-7} m = 0.1 μm = 100 nm

For higher resolution need higher frequency

– X-Rays? Difficult to focus.

– Electrons

• wavelengths ca. 3 pm (0.003 nm)
 – (Magnification - 1,000,000X)

• Atomic resolution possible

• Electron beam focused by magnetic lenses.
Scanning Tunneling Microscopy (STM)

• Atoms can be arranged and imaged!

Carbon monoxide molecules arranged on a platinum (111) surface.

Iron atoms arranged on a copper (111) surface. These Kanji characters represent the word “atom”.

Photos produced from the work of C.P. Lutz, Zeppenfeld, and D.M. Eigler. Reprinted with permission from International Business Machines Corporation, copyright 1995.
Summary

- **Point, Line, and Area** defects exist in solids.

- The number and type of defects can be varied and controlled (e.g., T controls vacancy conc.)

- Defects affect material properties (e.g., grain boundaries control crystal slip).

- Defects may be desirable or undesirable (e.g., dislocations may be good or bad, depending on whether plastic deformation is desirable or not.)
Prob 4.1.1 Al, Li: \(\rho = 2.55 \text{ g/cm}^3 \) is desired

Find Li (in wt%) because \(\text{C}_{\text{Li}} + \text{C}_{\text{Al}} = 100\% \)

\[
\rho_{\text{ave}} = \frac{100}{\frac{\rho_1}{\text{C}_{\text{Li}}} + \frac{\rho_2}{\text{C}_{\text{Al}}}} = \frac{100}{\frac{\text{C}_{\text{Li}}}{\rho_{\text{Li}}} + \frac{100 - \text{C}_{\text{Li}}}{\rho_{\text{Al}}}}
\]

\(\rho_{\text{Li}} = 0.534 \text{ g/cm}^3 \)
\(\rho_{\text{Al}} = 2.71 \text{ g/cm}^3 \)

\[
\text{C}_{\text{Li}} = \frac{100 \rho_{\text{Li}} (\rho_{\text{Al}} - \rho_{\text{ave}})}{\rho_{\text{ave}} (\rho_{\text{Al}} - \rho_{\text{Li}})}
\]

\[
\text{C}_{\text{Li}} = \frac{100 (0.534 \text{ g/cm}^3)(2.71 \text{ g/cm}^3 - 2.55 \text{ g/cm}^3)}{(2.55 \text{ g/cm}^3)(2.71 \text{ g/cm}^3 - 0.534 \text{ g/cm}^3)}
\]

\[
\text{C}_{\text{Li}} = 1.540 \text{ wt%}
\]